Comparison Analysis of Traditional Machine Learning and Deep Learning Techniques for Data and Image Classification
نویسندگان
چکیده
The purpose of the study is to analyse and compare most common machine learning deep techniques used for computer vision 2D object classification tasks. Firstly, we will present theoretical background Bag Visual words model Deep Convolutional Neural Networks (DCNN). Secondly, implement a Words model, VGG16 CNN Architecture. Thirdly, our custom novice DCNN in which test aforementioned implementations on modified version Belgium Traffic Sign dataset. Our results showcase effects hyperparameters traditional advantage terms accuracy DCNNs compared classical methods. As tests indicate, proposed solution can achieve similar - some cases better than existing architectures. Finally, technical merit this article lies presented computationally simpler architecture, believe pave way towards using more efficient architectures basic
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
on the comparison of keyword and semantic-context methods of learning new vocabulary meaning
the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...
15 صفحه اولComparison of Machine Learning Techniques for Magnetic Resonance Image Analysis
Magnetic resonance imaging (MRI) is a powerful non-invasive medical imaging technique that encodes the mechanical, physiological and chemical structure of soft tissues. However, manual segmentation of tissue regions of interest (ROIs) can be a laborious process prone to operator error. In this project, we compared algorithms from 3 classes of supervised machine learning (ML) techniques for MRI ...
متن کاملinvestigating the effect of motivation and attitude towards learning english, learning style preferences and gender on iranian efl learners proficiency
تحقیق حاضر به منظور بررسی تاثیر انگیزه و نگرش نسبت به یادگیری زبان انگلیسی، ترجیحات سبک یادگیری و جنسیت بر بسندگی فراگیران ایرانی زبان انگلیسی انجام شد. برای این منظور، 154 فراگیر ایرانی زبان انگلیسی در این تحقیق شرکت کردند. سه ابزار جمع آوری داده ها شامل آزمون تعیین سطح بسندگی زبان انگلیسی آکسفورد، پرسشنامه ترجیحات سبک یادگیری براچ و پرسشنامه انگیزه و نگرش نسبت به یادگیری زبان انگلیسی به م...
Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: WSEAS transactions on mathematics
سال: 2022
ISSN: ['1109-2769', '2224-2880']
DOI: https://doi.org/10.37394/23206.2022.21.19